
MA4J8 Commutative algebra II

Summary of the second part of the course

Contents of Chapter 7 Homological algebra: There is a useful summary
of what we need from homological algebra in [Ma], Appendix B from p. 274.
The Appendix by Groutides on my website is also useful. I intend that
my notes will eventually contain detailed sections on projective modules,
and on injective modules. The reason for the proliferation of appendices is
that no-one wants to spend several weeks of lectures giving all the necessary
background on homological algebra, most of which is elementary but long.
Although the homological appendix comes last in the notes, it consists of
prerequisites the reader who has not met the material needs to absorb first.

Contents of Chapter 5 This treats complexes and syzygies, the Koszul
complex and regular sequences. Free and projective resolutions of finite
modules, the first form of the Hilbert syzygies theorem and the Auslander–
Buchsbaum refinement.

Contents of Chapter 6 This puts together regular sequences and the
applications of Ext groups in homological algebra to treat Cohen–Macaulay
rings and modules and Gorenstein rings. The basic point is that conditions
on depth are equivalent to the vanishing of Ext groups in some range. The
Ext groups work both ways, as contravariant functors in the first variable
and as covariant functors in the second, and a main aim is to join the two
together to give the best treatment.

5 Introduction to syzygies and complexes

5.1 Introduction

For a nice ring A and a finite A-module M , consider this picture:

0←M ← P0 ← P1 ← · · · ← Pn−1 ← Pn. (5.1)

I commonly assume

(1) (5.1) is an exact sequence of A-modules.

(2) Each Pi is a finite free A-module Pi = biA =
⊕
Aeij .
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(3) (Sometimes) the sequence has length n, and the complex is also exact
at the Pn term so the final map Pn−1 ← Pn ← 0 is injective.

(4) (Sometimes) A, the modules Pi and the maps are graded.

The structure (5.1) is called a free resolution of M , or a finite free reso-
lution if (3) holds. This idea appears frequently in all kinds of arguments.

I spell out (5.1): P0 = b0A is a free A-module of rank b0 mapping
surjectively to M – it specifies b0 generators of M . Exactness of (5.1) at
P0 means that P1 maps surjectively to ker{P0 →M}, so P1 corresponds to
writing generators for the submodule of A-linear relations between the given
generators of M .

Now P2 corresponds to the relations between the relations, that are called
syzygies. (Greek for “yoke” – the relations are yoked together like a pair of
oxen in ploughing, or are subject to linear dependence relations like stars in
conjunction.) I give a discussion from scratch.

A free resolution (5.1) is minimal if each Pi provides a minimal set of
generators of ker{Pi−1 → Pi−2}. This happens if and only if every entry of
the matrix representing Pi → Pi−1 is not a unit, so in the maximal ideal.

I prefer to write the maps left-to-right for three reasons:

• The object under study is M , and the surjective map P0 = b0A�M
means choosing generators of M . At a basic level, the argument starts
here.

• In general, whether the free resolution ends after n steps with an
injective map Pn−1 ← Pn from a free module Pn is part of the problem:
it only holds under special conditions. The Hilbert syzygies theorem
gives conditions under which it holds.

• If the free modules have specified bases Pi = biA =
⊕
Aeij , each map

Pi−1 ← Pi is a bi−1 × bi matrix Mi, taking (u1, . . . ubi) ∈ Pi (as a
column vector) to matrix product Micol(u1, . . . ubi) ∈ Pi−1). Syzygy
modules and free resolutions are a standard item of computer algebra,
and it is almost always most convenient to write the complex in this
order so that composition of maps is written as M1M2 = 0, etc.

Examples Let A be an integral domain, and x ∈ A a nonzero element.
This gives the s.e.s. 0 → A

x−→ A → A/(x) → 0 that we have seen many
times. The principal ideal xA is isomorphic to A, that is, it is a free module
of rank 1. This is the only case when an ideal is a free module.
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Suppose f, g ∈ A are coprime elements of a UFD. If f, g are algebraically
independent, you might think that the ideal I = (f, g) would be isomorphic
to the direct sum Af ⊕Ag.

Of course this never happens. Even in the simplest case (f, g) = (x, y) ∈
k[x, y](0,0)), the f and g may be algebraically independent (they eliminate
different variables), but they are not A-linearly independent as elements of
the ideal I. In fact, the map A ← 2A that takes (1, 0) 7→ f and (0, 1) 7→ g
does (a, b) 7→ af + bg ∈ A. This always has (−g, f) in its kernel. Stupid,
but true!

If A is a UFD and f, g have no common factors then af = −bg if and
only if

f = −bc and g = ac for some c ∈ A. (5.2)

This gives the s.e.s.

0← I ← 2A← A← 0 with maps (f, g) and
(
−g
f

)
(5.3)

as the free resolution of the ideal I. Or we might choose to write

0← A/I ← A← 2A← A← 0 (5.4)

as the free resolution of the quotient ring A/I. It is also common to rephrase
this as the exact complex

A← 2A← A← 0 or P0 ← P1 ← P2 ← 0 (5.5)

with 0th homology H0(P q) = A/I. This is the Koszul complex of (f, g), and
I elaborate on it later under weaker assumptions.

For f, g ∈ k[x1, . . . , xn] with no common factors, the variety V (I) =
V (f, g) ⊂ An is a codimension 2 complete intersection (assume here that
n ≥ 2 and V (I) 6= ∅). Its coordinate ring k[V ] = A/I (or its local ring OV,P
at a point P ∈ V ) has the free resolution of length 2 given by the Koszul
complex of (f, g).

These ideas are close to some of the foundations of homological algebra.
I don’t have weeks to spend on this, but I run through some of it presently,
especially the ideas related to the Hom functor and its derived Ext∗ treated
in terms of projective resolutions (usually free resolutions as above), and get
some results related to duality.

5.2 The Hilbert syzygies theorem, first proof

I discuss the Hilbert syzygies theorem in more-or-less the original form. Let
S = k[x1, . . . , xn] be a graded polynomial ring over an infinite field k, and
write m = (x1, . . . , xn) for the graded maximal ideal.
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Theorem 5.1 (Syzygies theorem (1890)) Suppose that M is a finite
graded S-module.

Then there exist a finite free resolution of the form (5.1)

0←M ← P0 ← P1 ← · · · ← Pn−1 ← Pn ← 0 (5.6)

with k ≤ n.

Overall shape of the proof The proof is an induction on n, starting
at n = 0 with the statement that a finite dimensonal vector space has a
basis. The inductive step uses two different mechanisms. (I) If a linear form
is a nonzerodivisor for M , we can mess around with coordinate changes to
ensure that xn is a nonzerodivisor for M . By induction, we can assume
that the result holds for N = M/xnM as a finite graded module over S =
k[x1, . . . , xn−1]. Now we can lift a finite free resolution of N to one for
M using simple diagram chasing (5.9). Here we use the condition xn a
nonzerodivisor to ensure that the snake lemma gives the required exact
sequences.

(II) If all linear forms in the xi annihilate something in M (which means
m ∈ AssM), choose generators m1, . . . ,mb0 ∈M , and write p : P0 = b0S �
M for the standard surjective map. Now switch attention to ker p. This is
a submodule of the free S-module P0, so it is torsion-free: every nonzero
element is a nonzerodivisor, so the mechanism of (I) applies to ker p.

Roughly speaking, the first step works assuming that depthM > 0, and
decreases the dimension by passing to the hyperplane section xn = 0. The
lifting argument is called the hyperplane section principle. The second step
increases the depth if necessary, thus making the first step applicable. I
treat this first in a naive way, as if we were still in the 1890s, but we can
soup up the result by turning on more recent technology, as I sketch later.

Theorem 5.2 (Hilbert syzygies + Auslander–Buchsbaum) Let S,m
be a regular local ring of dimension n, and M a finite graded S-module of
m-depth ≥ d. Then M has a finite free resolution of length ≤ n− d. Proof
currently omitted. See [Ma] and [Ei] for the modern form.

The argument for (I) in detail. Suppose n ≥ 1. Assume that xn is a
nonzerodivisor for M , providing the standard short exact sequence

0→M
xn−→M

π−→ N → 0. (5.7)
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Now N is a finite module over S = k[x1, . . . , xn−1], so by induction, it has
a finite free resolution by graded free S-modules:

0← N ← Q0 ← Q1 ← · · · ← Qn−1 ← Qn ← 0 (5.8)

Each Qi is a finite free graded module. Set1 Qi = biS =
⊕bi

j=1 S(−aij).
Write p : Q0 � N – its image is generated by the images p(e0j) ∈ N0j of the
basis elements of Q0.

5.3 Hyperplane section principle

The lemma below is not confined to the graded polynomial case. It does
not aim directly for a whole finite free resolution. Instead, it works with a
finite A-module M and its quotient N = M/xM by an element x ∈ A. It
concerns generators of M , relations between given generators, and syzygies
between the relations.

Lemma 5.3 (Hyperplane section principle) Let A be a ring, x ∈ A,
and let M be a finite A-module. Assume that x is a nonzerodivisor of M
and xM ( M . We also work under the alternative assumptions: either all
of A, M and x are graded with deg x > 0, or A,m is local and x ∈ m. Write
A = A/(x) and N = M/xM as in (5.7)

(1) Generators: Suppose that nj ∈ N are generators of N . Then there
exist mj ∈M such that mj 7→ nj, and these mj generate M .

(2) Relations: Now write P0 = b0S for the free S-module corresponding
to the generators mj, and K0 = ker{P0 �M} for the relations holding
between them. The same construction for the generators nj of N over
A is the free module Q0 = b0A → N , and the submodule and L0 =
ker{Q0 → N} of relations between them. Then K0 → L0 is surjective.

In particular, we can lift every relation
∑
ajnj ∈ L0 between the gen-

erators nj of N to a relation
∑
ajmj ∈ K0, and these lifted relations

generate K0.

(3) Syzygies: A free resolution Q q � N can be lifted to a resolution
P q � M of the same shape. This means that it has the same Betti
numbers, and in the homogeneous case its graded pieces have the same
degrees.

1The notation S(−a) means the module S with basis 1 ∈ S an element degree −a. The
point of this is to keep track of the grading – my resolution complexes have morphisms
with entries S(−a) → S(−b) given by polynomials of degree a − b ≥ 0, and I view the
morphisms as having degree 0.
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Proof of (1) In the local case, the mj generate M modulo mM , so the
result follows by Nakayama’s lemma. Finite graded modules offer a different
(and older) trick: induction on the degree of homogeneous elements. In fact,
for c ∈ M , write π(c) ∈ N as the combination π(c) =

∑
αjnj , and pick

aj ∈ A with π(a) = αj . Then c −
∑
ajmj is in kerπ, so is divisible by x.

That is, c−
∑
ajmj = xc′ with deg c′ = deg c− 1. Now by induction on the

degree we can assume that c′ ∈
∑
Amj , which proves the lemma.

Proof of (2) We have seen that we can get generators of M (giving P0

with the surjective map P0 � M) by lifting generators of N . We want to
control the kernel K0 of P0 � M in the same way, in terms of the kernel
L0 of Q0 � N . (2) asserts that the surjective map P0 → Q0 induces a
surjective map K0 → L0. This comes from the commutative diagram

0 → K0 → P0 → M → 0yx yx yx
0 → K0 → P0 → M → 0y y y
0 → L0 → Q0 → N → 0

↓ ↓
0 0

(5.9)

In (5.9) the horizontal rows 0→ K0 → P0 → M → 0 and 0→ L0 → Q0 →
N → 0 are exact, and the maps P0 � Q0 and M � N are surjective by
construction.

Here I use the assumption that x is M -regular: the top right vertical
map M

x−→M is injective. The snake lemma applied to the second and third
row gives the long exact sequence

0→ kerx→ kerx→ kerx
δ−→ coker{K0 → L0} → coker→ coker→ 0.

Since at the top right P0 → M is surjective, it follows that at the bottom
left coker{K0 → L0} = 0, that is, K0 � L0 is surjective.

Proof of (3) This follows from (2) by applying it with M � N replaced
by P0 � Q0 and then successively by Pi � Qi. �
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Proof of Theorem 5.1 If some linear form in the xi is M -regular, we can
change coordinates so that it is xn, and the Lemma allows us to decrease
the dimension of S. If we can’t do that, choose generators of M and the
corresponding surjection P0 �M from a free module P0. The kernel K0 =
ker{P0 � M} is a submodule of a free module, so is torsion free. In this
case, every nonzero element of S is M -regular, and in particular xn. Then
we can decrease n by passing to the quotient by xn. The initial step of
passing from M to K0 added 1 to the length of the resolution chain, but
the next step cuts the dimension down by 1, so by induction, we get a free
graded resolution of length ≤ n. �

The top score for the length of a free resolution is achieved at M =
S/m = k, with length n given by the Koszul complex K(x1, . . . , xn). We set
P0 = S, and the kernel K0 = kerS → k is the maximal ideal m itself. This
is torsion free, but has depth only 1 for the reason described in Section 5.5:
in this case K0/xnK0 as an S module is isomorphic to the quotient field k
as the module k[x0, . . . , xn−1]/(x0, . . . , xn−1).

5.4 Regular sequences and the Koszul complex

I go back to the Koszul complex. Let A be a ring and I an ideal, and let M
be an A-module (the case M = A is often the most useful).

Definition 5.4 An element s ∈ I is M -regular or is regular for M if it is
a nonzerodivisor but not a unit, that is, s : M → M is injective but not
surjective.

A sequence of elements s1, . . . , sn ∈ I is a regular sequence for M if si
is regular for M/(s1, . . . , si−1)M for each i = 1, . . . , n. Spelling that out to
distinguish the initial, the inductive and the final steps: s1 is regular for M
(as above), s2 is regular for M/s1M , and ditto all the way to sn regular for
M/(s1, . . . , sn−1)M . This includes the condition that (s1, . . . , sn)M (M .

The I-depth of M is defined as the maximum length n of a regular
sequence s1, . . . , sn in I.

If x ∈ A is a nonzerodivisor of A then the quotient A/(x) comes in a
s.e.s. 0→ A

x−→ A→ A/(x)→ 0 where the first two elements are isomorphic.
This corresponds to the idea of cutting an n-dimensional variety V by a
hypersurface section. In geometry, this is a really obvious thing to try, but
there is a hidden difficulty: the point is to make sure that this is a “clean”
cut, meaning that we have the whole ideal of the section (as a geometric
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locus), and don’t need to mop up nilpotents after the cut. The next section
discusses how this obvious cutting can fail.

I now give a first introduction to the relation between regular sequences
and the Koszul complex, restricted to length 2: if A, I are given and s1, s2 ∈
I, their Koszul complex

0← P0 ← P1 ← P2 ← 0 (5.10)

has P0 = A, P1 = 2A, P2 = A, the first map (s1, s2) and second map (−s2s1 ).
The complex (5.10) is clearly always defined (the composite is zero).

Proposition 5.5 (1) Assume (s1, s2) is a regular sequence. Then

K(s1, s2) q : P0 ← P1 ← P2 ← 0 (5.11)

is exact at P1 and P2. (Regular sequence replaces the assumptions of
the introduction that A is a UFD and f, g coprime.)

(2) If s1 is a regular element then H1(K(s1, s2)) = 0 implies that s2 is
regular for A/s1, so that (s1, s2) (in that order) is a regular sequence.

(3) Assume in addition that A,m is local Noetherian, and s1, s2 ∈ m.
Then H1(K(s1, s2)) = 0 also implies s1 is regular.

(4) The complex K(s1, s2) q is symmetric in s1, s2 up to swapping the el-
ements and the signs, so that in the local Noetherian case, (s1, s2) a
regular sequence implies that (s2, s1) is also.

Proof (1) P2 → P1 takes c ∈ A to (−s2c, s1c), and already the second
factor is injective (regardless of s2).

For exactness at P1, the homology H1(K q(s1, s2)) computes the module
quotient

{(a, b)
∣∣ s1a+ s2b = 0} / {(−s2c, s1c) for c ∈ A}. (5.12)

Let (a, b) ∈ P1 with s1a + s2b = 0 ∈ P0. The regular sequence assumption
is that s2 is a nonzerodivisor modulo s1: however s1a+ s2b = 0 ∈ P0 means
that s2 multiplies the class of b in A/(s1) to s2b = −s1a = 0 ∈ A/(s1), so b
was already in (s1).

Now set b = s1c. Then s1a+ s2b = 0 gives s1(a+ s2c) = 0. But s1 was
a nonzerodivisor of A, so in turn a = −s2c. Thus (a, b) is the image of c
under d2, and the complex is exact at P1.
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(2) Conversely: if H1 = 0, an element b such that s1a + s2b = 0 is
b = s1c, so that if s2b = 0 ∈ A/(x) it follows that b is already a multiple of
s1. Therefore s2 is a nonzerodivisor for A/(s1).

(3) Assume K q is exact at K1. I claim that an element a ∈ A with
s1a = 0 is a multiple of s2. In fact (a, 0) ∈ P1 is in the kernel of P1 → P0,
so H1 = 0 gives (a, 0) = (−s2c, s1c) for some c ∈ A.

ker s1 = s2(ker s1), (5.13)

and in the Noetherian local set-up, Nakayama’s lemma implies that ker s1 =
0 so a = 0.

(4) is obvious. �

Example 5.6 Without local, (3) and (4) fail: Take fairly general poly-
nomials F,G,H ∈ A = k[x1, . . . , xn]. Set A = k[x1, . . . , xn]/(FG) and
consider s1 = 1− F , s2 = FH. Then s1 is regular provided that 1− F has
no common factors with FG.

Next, F is a unit mod s1 in the quotient A/(s1), so multiplying by s2 in
A/(s1) is the same as multiplying by H, and is injective. Thus (s1, s2) in
that order is a regular sequence. However, s2 is not regular because s2G = 0.

If P is a prime ideal containing both of s1, s2, then G maps to zero in
the local ring AP . Thus the counterexample goes away in the local setting.

The statement and proof of the proposition applies verbatim with A
replaced by an A-module M , and the sequence by

M ← 2M ←M ← 0. (5.14)

For (3–4) we still require A,m local Noetherian and M finite.

5.5 Examples of depth 0 and depth 1

See Worksheet 3, Part I for Serre’s R1 plus S2 criterion for normal.
Let A,m be a local ring. Then an A-module M has m-depth zero if

and only if every f ∈ m is a zerodivisor of M . By basic facts on primary
decomposition, this happens if and only if m is an associated prime of M ,
in other words, there exists a nonzero x ∈M with mx = 0.

1. Embedded point The ideal I = (xy, y2) ⊂ A = k[x, y] is a key case of
primary decomposition. You can describe I as the functions f that satisfy
two conditions
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• f vanishes on the x-axis y = 0.

• f is singular at (0, 0). Equivalently: it has multiplicity ≥ 2. It belongs
to m2 where m = (x, y); it has zero derivatives ∂f/∂x = ∂f/∂y = 0.

In the quotient A/I, the element y satisfies y2 = 0, so it takes the value
zero everywhere. Also my = 0, so y is in the ideal away from the origin,
but y /∈ I, so its class is not zero in A/I. It is a little scrap of nilpotent fluff
hanging onto the line at 0, but it causes difficulties in different arguments.

The submodule (y)/I ⊂ A/I is nonzero, but annihilated by m, so is
isomorphic to k = A/m. Thus m ∈ Ass(A/I). Since my = 0, every f ∈ m
is a zerodivisor for A/I, so m- depth(A/I) = 0.

In primary decomposition, we can write

I = (y) ∩ (x, y)2, (5.15)

but equally well I = (y) ∩ (y2, x) or (y) ∩ (y2, x − ay). (If a curve already
contains the x-axis, requiring it to be tangent to any other curve through
(0, 0) forces it to be singular.)

2. Transverse planes in A4 Start from two transverse planes

X = A2
〈x,y〉 ∪ A2

〈z,t〉 with IX = (z, t) ∩ (x, y) = (xz, xt, yz, yt). (5.16)

Set A = k[X] = k[x, y, z, t]/IX and cut it by a general hyperplane through
the origin, say

H : (y + t = 0). (5.17)

Geometrically, the hyperplane cuts the first A2 in the line y = 0, and the
second A2 in the line t = 0. So every point of H ∩X is in y = t = xz = 0,
which is the line pair xz = 0 in A2

〈x,z〉. This is obviously the right answer as
far as the set of points is concerned.

However, the ring A = k[X]/(H) has an embedded point at the origin
(0, 0, 0, 0), or expressed more algebraically, m = (x, y, z, t) ∈ AssA. Clearly
t = −y, and one sees that my = 0, but y 6= 0 in A, because the ideal IX
does not have any linear entries. So A has y as a nilpotent supported at the
origin, and m- depthA = 1.

3. Missing monomial The polynomial ring k[x, y] is the ring of polyno-
mial functions on the plane A2. The condition ∂f/∂x(0, 0) = 0 defines the
subring B ⊂ k[x, y] based by every monomial except x. One sees that it is
generated by

u = x2, v = x3, w = y, z = xy. (5.18)

10



The ideal of relations between u, v, w, z is

J = (v2 − u3, z2 − uw2, uz − vw, vz − u2w). (5.19)

In Magma:

RR<x,y,u,v,w,z> := PolynomialRing(Rationals(),6);

L := [-u+x^2,-v+x^3,-w+y,-z+xy]; I := Ideal(L); IsPrime(I);

MinimalBasis(EliminationIdeal(I,2));

Obviously B ⊂ k[x, y] is an integral domain, so every nonzero element is
regular.

The image of A2 under the polynomial map to A4 given by (x, y) 7→
(u, v, w, z) might seem to be a perfectly nice variety V = V (J) ⊂ A4 with
coordinate ring B = k[u, v, w, z]/J , having a little cusp at the origin a bit
like the cuspidal cubic we know from primary school. However, the unquiet
spirit of the departed monomial x still haunts B and V .

Write m = (u, v, w, z) for the maximal ideal at the origin. Although
x /∈ B, its product with anything in m is in B. Any section of V through
the origin is marked by an embedded point, a little nilpotent submodule not
accounted for by the restriction of J .

To explain: pass to the quotient ring B/(f) by any nonzero f ∈ m.
Consider the missing monomial x. Its product fx ∈ A by f is in B, but
it is not a multiple of f in B. Therefore fx maps to a nonzero element
ξ ∈ B/(f). This ξ is annihilated by every element of the maximal ideal
m/(f). In fact for g ∈ m, the product gξ is the class of gfx = f · gx in B.

This means that although B is an integral domain, it only has m-depth
1. The quotient B/f by any f ∈ m has a nonzero element ξ annihilated
by m, so the regular element f does not extend to a regular sequence of
length 2 in m.

The maximal idealm ⊂ k[x1, . . . , xn] viewed as a module over k[x1, . . . , xn]
also has m-depthm = 1 as mentioned at the end of the proof of Theorem 5.1.

4. Macaulay’s quartic curve The rational normal curve in P4 is the
image of P1

〈u,v〉 under its 4th Veronese map (u4 : u3v : u2v2 : uv3 : v4).

However, omitting the monomial u2v2 also embeds P1 ↪→ P3 by the map
(u4 : u3v : uv3 : v4). The affine cone over this is the subring B ⊂ k[u, v]
generated by the monomials (x, y, z, w) = (u4, u3v, uv3, v4) related by

xw − yz, x2z − y3, xz2 − y2w, yw2 − z3. (5.20)

It is interesting to carry out the same arguments as in Example 3 in terms
of the missing monomial u2v2 /∈ B to verify that B also has m-depth 1.
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5. Another depth 1 case Consider three 2-planes P1, P2, Q ⊂ P4 such
that P1, P2 meet along a line P1 but Q meets P1, P2 transversally at single
points. For example, in homogeneous coordinates x, y, z, u, v, take P1 =
V (x, y), P2 = V (x, z), Q = V (u, v). The ideal of Γ = P1 ∪ P2 ∪Q is

(x, y) ∩ (x, z) ∩ (u, v) = (x, yz) ∩ (u, v) = (xu, xv, yzu, yzv).

One calculates that there are 4 syzygies between the 4 relations, yoked by a
single second syzygy: That is, the ideal has a free resolution

P0
M0←−− P1

M1←−− P2
M2←−− P3 ← 0

where P0 = A, P1 = 2A(−2)⊕ 2A(−3), P2 = A(−3)⊕ 3A(−4), P3 = A(−5)
and the matrices are M0 = (xu, xv, yzu, yzv),

M1 =


v 0 yz 0
−u 0 0 yz
0 v −x 0
0 −u 0 −x

 and M2 =


yz
−x
−v
u

 .

In view of the Auslander–Buchsbaum refinement of Hilbert syzygies, the
shape of the free resolution implies that the depth can only be 1. Write
A = k[x, y, z, u, v]/IΓ for the homogeneous coordinate ring. Its local ring
Am at the maximal ideal m = (x, y, z, u, v) has m-depth = 1. Any linear
form not vanishing on a component of Γ is clearly regular. However, as in
the above Example 2, after cutting by s1, the quotient ring has a nilpotent
at the origin. In fact, it is the unquiet spirit of the discontinuous function
f with f = 1 on P1 ∪ P2 and f = −1 on Q. This is not in Am, but its
product with any regular element of m = (x, y, z, u, v), because cutting by
any hypersurface disjoint from (0, 0, 0, 1, 0), (0, 0, 0, 0, 1) makes P1 ∪ P2 and
Q disjoint.

5.6 Koszul complexes of length 3 and 4

The Koszul complex K(s1, s2, s3) of length 3 is just a bit more involved: it
is

A← 3A← 3A← A← 0 (5.21)

with homomorphisms given by the matrices

(
s1 s2 s3

)
,

 0 s3 −s2

−s3 0 s1

s2 −s1 0

 ,

s1

s2

s3

 . (5.22)
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The 3 columns of the first syzygy matrix give the 3 trivial skewsymmetry
identities sisj = sjsi. Moreover, these 3 are linearly dependent in A3, as
expressed by the final 3× 1 matrix.

The logic is as in Proposition 5.5: in any case, (5.21) is a complex. If
s1, s2, s3 is a regular sequence, it is exact. And the converse under the extra
local Noetherian assumptiona. This is treated more formally in Theorem 5.9
below.

As you know, 3 dimensions is special in lots of ways. For example, you
were introduced to cross product of 2 vectors in R3 in applied math. This
gives a skew (antisymmetric) bilinear map R3 × R3 → R3, which sadly is
never mentioned by our algebraists because it is too advanced for 2nd year
algebra and just a special case that is too elementary for 4th year courses.
In algebra, the right-hand R3 should really be

∧2 R3 (I discuss this formally
below). I was interested to read that in particle physics, R3 has polar vectors
(e.g. momentum) whereas

∧2 R3 has axial vectors (e.g. angular momentum).
It is a well-known issue in algebra that there is no good general ordering

or signs for the k × k minors of an n ×m matrix. In (5.22) I ordered the
columns vectors of the first syzygy matrix as for cross product of vectors.
Dimension 3 is the last time that this rational and elegant choice is available.
For n ≥ 4 this get progressively messier, and we need a better solution.

The Koszul complex for n = 4 is

0← A← 4A← 6A← 4A← A← 0 (5.23)

with maps
(
s1 s2 s3 s4

)


0 s3 −s2 s4 0 0
−s3 0 s1 0 s4 0
s2 −s1 0 0 0 s4

0 0 0 −s1 −s2 −s3

 ,



s4 0 0 −s1

0 s4 0 −s2

0 0 s4 −s3

0 −s3 s2 0
s3 0 −s1 0
−s2 s1 0 0

 ,


s1

s2

s3

s4

 (5.24)

Note the block form [A
∣∣ B] and [tB \\−tA].

Similar exercise as to why it is exact.

5.7 Exterior algebra and general Koszul complex

This is taken from Eisenbud [Ei, pp. 427–429]. The exterior algebra provides
a neat formal solution to the issue of notation.
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As usual A is a ring and M and N are A-modules. I assume that you
have the tensor product of modules M ⊗A N on board.

The exterior algebra of N over A is∧
N =

⊕
r≥0

∧r
N (5.25)

where the skew (antisymmetric) product
∧rN is the quotient of the r-fold

tensor N ⊗· · ·⊗N by relations n⊗m+m⊗n = 0 for all n,m ∈ N . Assume
also the relations n ∧ n = 0 to dispel any fear of ambiguity. The image of
n ⊗m in

∧2N in the quotient is written n ∧m. In (5.25), the product of
u ∈

∧aN and v ∈
∧bN is u ∧ v ∈ W a+bN , satisfying v ∧ u = (−1)abu ∧ v.

In other words, two homogeneous elements of the exterior algebra (5.25)
anticommute if a and b are both odd, and commute if either is even.

A popular device with algebraists is to declare that
∧2N is the universal

A-module having a skew A-bilinear map N×N →
∧2N . As you know, this

is the categorical statement that
∧2N is the solution to the UMP for skew

maps N × N to an A-module. (Similarly for
∧rN .) Since the algebraic

rules (A-bilinear and skew) are laid out in advance, it can be constructed as
the A-module of linear combinations

∑
aijni ∧ nj quotiented by those rules

only.
This is just a definition; in some cases the “universal” nature of the

construction may give undesired consequences – e.g., if N is not a free A-
module then N ⊗N or

∧2N may have torsion elements that you were not
looking for.

For N an A-module and s ∈ N , the Koszul complex K(s) is defined as
the graded exterior product

∧
N with differential multiplication by s:

K(s) : 0→ A→ N →
∧2

N → · · · →
∧r

N → · · · (5.26)

Each differential dr :
∧r →

∧r+1 takes a 7→ s ∧ a. The notation is very
slick: the composite di ◦ di−1 of two differentials involves multiplying by
s ∧ s = 0, so is zero. The construction is coordinate-free, and the definition
also highlights the functoriality of the construction.

5.8 Koszul complex K(s1, . . . , sn,M)

The only case we use is the free module of rank n

N = nA =
⊕

Aei with basis e1, . . . , en, (5.27)
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and s =
∑
sjej .

Then
∧
N is the free module of rank 2n =

∑
i

(
n
i

)
: the degree r compo-

nent
∧rN is generated by skewnomials∧r

N =
⊕

Aei1 ∧ ei2 · · · ∧ eir with 1 ≤ i1 < · · · < ir ≤ k. (5.28)

The differential ds :
∧rN →

∧r+1N is premultiplication by s =
∑
sjej ,

that is, a 7→ s ∧ a. Acting on the skewnomial basis it does

ei1 ∧ · · · ∧ eir 7→
∑

sjej ∧ ei1 ∧ · · · ∧ eir . (5.29)

The formula in (5.29) politely conceals a pile of unsightly notation – this
is more-or-less the formula for the (r + 1) × (r + 1) minors of a matrix by
expanding them along the jth row.

In detail, each term sjej of x multiplies the skewnomial. If j equals one
of the subscripts il, skewsymmetry gives zero. Otherwise, the subscript j is
either < i1, or fits between il and il+1 for some l, or is > ir, and that term
of the skew product is then

= (−1)lsjei1 ∧ · · · ∧ eil ∧ ej ∧ eil+1
∧ · · · ∧ eir . (5.30)

The ±1 is the sign of the permutation taking ej to its rightful place after
the first l of the ei.

I defined the Koszul complex K(s1, . . . , sn, A) for A, but there is also a
Koszul complex for an A-module M given by

K(s1, . . . , sn,M) = K(s1, . . . , sn, A)⊗M. (5.31)

Since each term of K(s,A) is a direct sum of
(
n
i

)
copies of A, each term of

K(s1, . . . , sn,M) is a direct sum of the same number of copies of M .

5.9 The top end of K(s1, . . . , sn,M)

The differential ofK(s1, . . . , sn,M) is increasing, going from
∧rM →

∧r+1M .
It ends with

∧nM → 0.

Proposition 5.7 The cohomology of K(s1, . . . , sn) at the final term equals
A/(s1, . . . , sn). In the same way, the top cohomology of K(s1, . . . , sn,M) is
M/(s1, . . . , sn)M .

15



Proof The final term Kn of the complex K(s1, . . . , sn) =
∧nN is the free

module of rank 1 Af based by the single skewnomial f = e1 ∧ · · · ∧ en that
involves all the indices 1, . . . , n. The penultimate term Kn−1 =

∧n−1N is
free of rank n, based by the skewnomials fi

fi = e1 ∧ . . . ∧ êi ∧ . . . ∧ en for i = 1, . . . , n (5.32)

that omit just one index i.
Now the differential ds applied to fi gives (−1)isif . This is clear from the

above description. Therefore the image of ds is the submodule of A = Af
generated by (s1, s2, . . . , sn). The cohomology Kn/ds(Kn) is the quotient
module A/(s1, . . . , sn).

The argument for K(s1, . . . , sn,M) is the same: the final term K(M)n
is a single copy Af ⊗M of M ; the penultimate term K(M)n−1 is the direct
sum of n copies of M based by Afi⊗M , and the differential ds : K(M)n−1 →
K(M)n multiplies the ith summand by si, with image siM . Thus the quo-
tient K(M)n/ds(K(M)n−1) is as stated. �

[Ma, p. 127] uses a descending notation, where Pk has basis ei1,...,ik and
the differential omits each i one at a time with the appropriate sign change.
Relating the two notations is straightforward, and I omit it.

5.10 Tensor product by K(x) q
Let L q be a complex with differentials dL : Li → Li−1. For x ∈ A, the basic
Koszul complex K(x) q with entry x is 0 → A

x−→ A → 0, with first term A
of degree 1 mapping to A of degree 0.

Write L(x) q for the tensor product L q⊗ K(x) q with the 2-term Koszul
complex. Since K(x) consists of 2 terms of degree 1 and degree 0, with
differential x : A → A decreasing degrees by 1, the tensor product is the
following extension of L q by L[1] q:

L[1] q : · · · → Lp → Lp−1 → Lp−2 → · · ·
@R @R

L q : · · · → Lp+1 → Lp → Lp−1 → · · ·
(5.33)

The top line L[1] q is the complex obtained by shifting the degree of L q up
by 1: it has Lp in degree p + 1, that is L[1]p+1 = Lp, so that the three
columns in (5.33) have terms of the same homological degree, respectively
p+ 1, p, p− 1.
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The tensor product L(x) q is the direct sum of top and bottom rows, with
the differential

d⊗(ξ, η) = (dLξ + (−1)pxη, dLη) for ξ ∈ Lp and η ∈ L[x]p = Lp−1. (5.34)

Each parallelogram of (5.33) has sloping arrows given by multiplication by
x, and the alternating ± arrange that these anticommute. The condition
d2 = 0 for L(x) q to be a complex follows. (This is the usual argument for
tensor product of complexes).

Proposition 5.8 The tensor product complex L(x) q fits in a short exact
sequence of complexes

0→ L q→ L(x) q→ L[1] q→ 0. (5.35)

The resulting long exact homology sequence does

· · · → Hp(L q) → Hp(L(x) q) → Hp(L[1] q)→
(−1)p−1x−−−−−−→ Hp−1(L q) → · · ·

(5.36)

(The top group on the right Hp(L[1] q) = Hp−1(L q) and the snake map takes
it to itself.)

Moreover, multiplication by x acts by zero on the homology of the tensor
product complex. That is, x ·Hp(L(x)) = 0.

Proof The lower row of (5.33) has no arrows going out of it, so L q is a
subcomplex of L(x) q, with quotient the top row L[1] q. This establishes the
s.e.s.

For the boundary map, an element of Hp(L[1] q) is represented by a cy-
cle η ∈ Lp with dL(η) = 0. It is the image of (0, η) ∈ L(x)p+1 that has
differential ((−1)p−1xη, 0). This is the assertion of (5.36).

For the final statement, an element of Hp(L(x)) is represented by (ξ, η) ∈
Lp ⊕ Lp−1 that is a cycle, so has differential (dξ + (−1)p−1xη, dη) = (0, 0).
That is

xη = (−1)pdξ and dη = 0. (5.37)

Its product by x is of course (xξ, xη). Now consider ±(0, ξ) ∈ Lp+1 ⊕ Lp.
Its boundary in L(x) q consists of the two pieces xξ and dξ = ±η, so that x
times our cycle is a boundary. �

Theorem 5.9 (Ma, Theorem 16.5) Let A be a Noetherian ring and M
a finite A-module.
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(1) Suppose that s1, . . . , sn is a regular sequence for M . Then the Koszul
complex K q(s1, . . . , sn,M) has H0 = M/(s1...n) and Hp = 0 for all p with
0 < p ≤ n.

(2) If (A,m) is local and s1, . . . , sn ∈ m then a stronger form of the
converse holds. Namely, M 6= 0 and H1(K q(s1, . . . , sn,M)) = 0 implies that
s1, . . . , sn is a regular sequence for M .

In the particular case M = A, it follows that K q(s1, . . . , sn, A) → 0 is a
finite free resolution of the quotient A/(s1, . . . , sn), as in the introduction.

Both parts are proved by induction on n, applying Proposition 5.8 with

L = K(s1, . . . , sn−1,M) and L(sn) = K(s1, . . . , sn,M). (5.38)

Proof of (1) We assume s1, . . . , sn is a regular sequence, so by induc-
tion we can assume that K(s1, . . . , sn−1,M) is exact except at H0, where
H0(K(s1,...,n−1,M)) = M/((s1, . . . , sn−1)M). Everything we need now comes
from Proposition 5.8.

For p ≥ 2, the homology Hp of the extended complex L(sn) is sandwiched
between two groups that are zero by induction. For p = 1 the end of the
long exact sequence (5.36) includes

0 = H1(L)→ H1(K(s1, . . . , sn,M))→ H0(L)

±sn−−→ H0(L)→ H0(K(s1, . . . , sn))→ 0. (5.39)

Since sn is regular for M/((s1, . . . , sn−1)M), this implies K(s1, . . . , sn,M)
is exact at H1 and has H0 = M/((s1, . . . , sn)M), which proves (1).

Proof of (2) Since the si ∈ m and M 6= 0, Nakayama’s lemma gives
M/((s1, . . . , sn)M) 6= 0 and also M/((s1, . . . , si)M) 6= 0 for i < n).

The first point is to derive H1(K(s1, . . . , sn−1,M)) = 0 from the as-
sumption H1(K(s1, . . . , sn,M)) = 0. This allow us to assume by induction
that s1, . . . , sn−1 is a regular sequence. In fact, the long exact sequence

(5.36), has H1(L)
±sn−−→ H1(L)→ H1(K(s1, . . . , sn,M)) = 0 (the snake from

H2(L[1] q) to exactly the same group H1(L q), then the assumption H1 = 0.
Thus the snake map is surjective, so H1(L) = snH1(L), and Nakayama’s
lemma implies that H1(L) = 0.

Now we know that s1, . . . , sn−1 is a regular sequence, and the same long
exact sequence continues with

0→ H0(L)
±sn−−→ H0(L)→ H0(K(s1, . . . , sn,M))→ 0. (5.40)
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Therefore sn is a nonzerodivisor for H0(L) = H0(K(s1, . . . , sn−1),M) =
M/((s1, . . . , sn−1)M). �

Appendix: Tensor product of complexes (L q, dL)⊗ (M q, dM)

I assume that we have on board the tensor product of modules: for a ring
A and modules M,N there is a tensor product A-module M ⊗AN that has
the UMP for A-bilinear maps M ×N → an A-module U. In applications, a
main case is when M,N are free with bases ei, fj , in which case M ⊗AN is
free with basis ei ⊗ fj .

Given two complexes (L q, dL) and (M q, dM with (differentials decreasing
degrees), the double complex is the array {Li ⊗A Mj} with the two differ-
entials dL ⊗ 1M decreasing i and 1L ⊗ dM decreasing j.

The tensor product complex (L ⊗M) q is the single complex obtained
from the double complex by summing the modules over i, j with i+ j = k,
that is,

(L⊗M)k =
⊕
i+j=k

(Li ⊗Mj). (5.41)

The differential dk has alternating ±1

dk =
∑
i+j=k

dLi + (−1)jdMj . (5.42)

Here the (−1)j introduces one minus sign in each square, so that instead of
commuting, the arrows now anticommute, which together with the complex
conditions (dL)2 = (dM )2 = 0 makes dk ◦ dk−1 = 0, so that the sum is a
complex to make the sum a complex.

5.11 Regular local ring

Theorem 5.10 Let A,m, k be a Noetherian local ring, and n = dimA.
Then A is regular if

(i) The associated graded ring GrA =
⊕

km
k−1/mk is isomorphic to the

polynomial ring k[t1, . . . , tn].

(ii) m/m2 has dimension n as a k-vector space.

(iii) The maximal ideal m is generated by n elements.

(i–iii) also imply:
The maximal ideal m is generated by a regular sequence.
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This is easy: (i) implies (ii) is obvious. (ii) implies (iii) follows as usual
from Nakayama’s lemma: if x1, . . . , xn ∈ m generate m/m2 then they also
generate m. For (iii), if x1, . . . , xn generate m then polynomials of degree
d base md/md+1. A linear dependence between them would imply that
dimA < n (by the Hilbert series characterisation of dimension), so that
GrA is the symmetric k-algebra on x1, . . . , xn.

If x1 maps to t1 is (i), then x1 is a nonzerodivisor of A. Applying this to
A/(x1) and using induction gives that x1, . . . , xn is a regular sequence. �

Remark 5.11 The simple-minded statement and proof I gave of Theo-
rem 5.1 extends readily to the case of A a regular local ring of dimension n.
As in the above proof, we can always pass to K0 = ker{P0 → M} that is
torsion-free (because it is a submodule of a free module). Then any ele-
ment x ∈ m \m2 can be used in place of xn in the argument of Lemma 5.3
decreasing the dimension by 1.

However, this is not quite enough to prove the Auslander–Buchsbaum
form of the theorem in general in the case when the residue field k = A/m
is finite: it might happen that m-depthM > 0 but every linear form in
x1, . . . , xn is a zerodivisor of M . This needs some characterisations of depth
in terms of homological algebra and some more work. See [Ma] and [Ei].

Addenda

5.12 Projective modules

I mostly use finite free modules F =
⊕
Aei (I also write nA as above).

Projective is a mild generalisation of free, and projective modules appear
everywhere in the literature. The main case of interest is finite modules over
local rings (or graded rings), when projective is equivalent to free.

Definition 5.12 An A-module P is projective if every homomorphism from
P to a quotient module M/L lifts to M . To spell that out, if p : M � N is
a surjective homomorphism and g : P → N a homomorphism, there exists
h : P →M such that g is the composite g = ph. The picture:

M
p−−→ N → 0

h@@I 6g

P

given p and g, there exists h that makes the triangle commute.
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The condition that P is projective is equivalent to Hom(P, –) an exact func-
tor: if

0→ L→M → N → 0is a s.e.s.⇒ Hom(P,M) � Hom(P,N).

This says that a homorphism to N can be lifted via M , which is the projec-
tive assumption. Please think about it as an easy exercise.

Proposition 5.13 (1) A free module P is projective.

(2) An A-module P is projective if and only if P is a direct summand of
a free module.

(3) A finite projective module P over a local ring (A,m) is free. Therefore,
a finite projective module is locally free: its localisation Pp at each
p ∈ SpecA is free.

(4) Suppose that A is graded in positive degrees. Then a finite graded
A-module P that is projective is also free.

(5) The converse of (3). Let M be a finite module over a Noetherian ring
whose localisation Mm is a free Am-module at every maximal ideal m
of A. Then M is projective.

(1) A free module F is projective: take a basis F =
⊕
Aei. Then M → N

is surjective, so f(ei) is the image of some vi ∈ M and the map P → M
taking ei 7→ vi is defined and does everything required. This works because
there are no A-linear relations between the ei, so we can map then to any
elements of M we choose. The argument is exactly the same as for vector
spaces.

(2) In fact let ui ∈ P be a generating set; set F =
⊕
Aei for the free

module with basis ei enumerated by the same set as ui, and consider the
short exact sequence

0→ K → F → P → 0, (5.43)

where F → P takes ei 7→ ui and K is the kernel. If P is projective and
i : P → P the identity map, then a lift g : P → F splits the s.e.s., so that
F = K ⊕ P . Now g ◦ f : P → P is the identity, whereas f ◦ g : M → M is
idempotent and projects F to the kernel K. And conversely. Please think
about this if you haven’t met it before.
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(3) If A,m, k is a local ring, a finite projective module P is free by an
obvious application of Nakayama’s lemma: in fact V = P/mP is a finite
dimensional k-vector space. Choose ei ∈ P that map to a basis of V .
Nakayama’s lemma implies that the ei generate P , that is,

⊕
Aei → P is

surjective. Then P is a direct summand of the free module F =
⊕
Aei.

Moreover, the complementary summand is zero because the number of ei
equals the dimension of V .

Another proof of (3): A minimal (finite) set of generators of P gives
a surjective homomorphism f : F = nA � P . The projective assumption
gives a lift g : P → F of f , so that F = g(P )⊕K, with K = ker f . However,
a relation between the generators only has coefficients in m: an invertible
coefficient would mean the generators are not minimal. Then K ⊂ m · (nA),
so K ⊂ mK. Then K = 0 by Nakayama’s lemma.

Matsumura [Ma, p. 10–11] proves the same assertion not assuming P
finite by a transfinite induction (due to Kaplansky).

(4) This is a minor variation on the same proof, using induction on the
degree in place of Nakayama’s lemma.

(5) [Ei] and [Ma] both run the same proof, based on compatibility between
localisation and Hom.2

Proposition 5.14 (localisation and Hom) see [Ei], Prop 2.10 and [Ma],
Th 7.1. Let A be a ring and B an A-algebra. HomA(M,N) is an A-module,
so it makes sense to write B ⊗A HomA(M,N).

Now there is a B-module homomorphism

B ⊗A HomA(M,N)→ HomB(B ⊗AM,B ⊗A N).

Moreover, if B is flat over A (e.g. B = S−1A a localisation), and M is
finitely presented, it is an isomorphism.

Finitely presented means M has a presentation M ← b0A ← b1A with
b0 generators and b1 relations holding between them. This is automatic if A
is Noetherian and M is finite.

The localisation at m at a maximal ideal m of A is S−1 where S = A\m.
If N1 → N2 is surjective, write HomA(P,N1)→ HomA(P,N2)→ K → 0 for
its cokernel. I claim K = 0.

2To do: I would like to see a complete proof from first principles.
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Localisation S−1 is an exact functor. so that

S−1 HomS−1A(S−1P, S−1N1)→ S−1 HomS−1A(S−1P, S−1N2)→ S−1K → 0

is still exact. However, in (5) we assume that S−1P = Pm is a free Am
module, so that the localisation S−1K = Km of K is zero at every m. This
implies that K = 0 (because if K 6= 0 is has an associated prime P , so
x ∈ K with Annx contained in a maximal ideal). �

Example 5.15 (Counterexample: projective but not free) LetOK is
the ring of integers of a number field K/Q. Every localisation of OK is a
DVR, so that an ideal I is always locally free. An ideal I ⊂ OK is a free OK-
module if and only if it is principal, and if the class group of K is nonzero,
there are ideals I that are not principal.

All of this applies equally well to the divisorial sheaf OC(D) of a divisor
on a nonsingular affine algebraic curve C.

5.13 Injective modules

The definition and the existence of injective modules are needed for con-
structions in homological algebra, but for most purposes, we don’t pretend
to know what they are – in any case, they are hard to work with as explicit
constructions. When we use injective modules in constructions, they often
do not seem to contain any tangible information, and do not relate closely
to the modules they resolve. I outline here some details on their existence
and properties, mostly taken from Charles A. Weibel, An introduction to
homological algebra, CUP 1994.

Definition 5.16 An A-module I is injective if HomA(–, I) is an exact func-
tor. This means that given an inclusion M1 ⊂ M2 between A-modules and
a homomorphism e : M1 → I, there exists an extension of e to a homo-
morphism f : M2 → I, with f restricted to M1 equal to e.

In other words, for every short exact sequence 0 → M1 → M2 →
M3 → 0 in the category of A-modules, the sequence 0 → Hom(M3, I) →
Hom(M2, I)→ Hom(M1, I)→ 0 is split.

Example 5.17 A k-vector space V is an injective k-module: if U ⊂ W
are vector spaces, a k-linear map U → V extends to W → V (by choosing
a complementary basis). This is basic linear algebra, together with Zorn’s
lemma if U,W are infinite dimensional.
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Example 5.18 The inverse p-torsion module (Z[1
p ])/Z is an injective Z-

module. It is the Abelian group generated by 1
pn for all n ≥ 0, and related

by p · 1
pn = 1

pn−1 and pn = 0 for n ≥ 0. Notice that it is p-divisible. Check

that it is also n-divisible for n coprime to p. We took notice of (Z[1
p ])/Z

earlier in the course as an Artinian module that is not Noetherian.
There is an inverse π-torsion module A[ 1

π ]/A for a DVR with parameter
π constructed in the same way, that is also injective. For example, A could
be the localisation k[x]0 or completion k[[x]] with π = x.

Summary: Every Z-module M embeds into a product of the inverse p-
torsion modules (Z[1

p ])/Z (usually an infinite product). We can view any ring
A as a Z-algebra; then for an injective Z-module I, the Z-module HomZ(A, I)
becomes an A-module under premultiplication, and is an injective A-module.
We can view an A-module M as a Z-module and embed it into an injective
Z-module I. An inclusion of M into an injective A-module is then provided
by the tautological identity

HomZ(M, I) = HomA(M,HomZ(A, I)).

Proposition 5.19 (Baer’s criterion) Let I be an A-module. Assume that
for every ideal a of A, every homomorphism e : a → I extends to a homo-
morphism f : A→ I from the whole of A. Then I is an injective A-module.

For example, if A = Z, the assumption says that every element i ∈ I is
divisible by every nonzero n ∈ Z.
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Proof Suppose M ( N is an inclusion of A-modules and ϕ : M → I is
given. To extend ϕ to a new element b ∈ N \M , define the ideal a ⊂ A and
the homomorphism e : a→ I by setting

a = {x ∈ A | xb ∈M} ⊂ A and e(x) = ϕ(xb) for x ∈ a.

By our assumption, this e extends from a to the whole of A as a homo-
morphism f : A → I, with f(x) = ϕ(xb) for x ∈ a. Now extend ϕ to the
bigger submodule M +Ab ⊂ N taking b to ϕ′(b) = f(1). That is, set

ϕ′ : M +Ab→ I by ϕ′(m+ yb) = ϕ(m) + yf(1)

This is well defined: a different choice m+ yb = m′ + y′b would give

(y − y′)b = m′ −m ∈M,

so y − y′ ∈ a and (y − y′)f(1) = e((y − y′)b) = ϕ(m′ −m).
Now a standard application of Zorn’s lemma: the set Σ = {M,ϕ} of

submodules M ⊂ N and homomorphisms ϕ : M → I is inductive, so has a
maximal element that can only be an extension of ϕ to the whole of N . �

Corollary 5.20 An Abelian group (a Z-module) is injective if and only if
it is divisible. Hence Q and (Z[1

p ])/Z are injective Z-module.

I call the Z-modules (Z[1
p ])/Z the inverse p-torsion module, by anal-

ogy with Macaulay’s inverse monomials treated earlier in the course. Any
injective is a direct product of these.

Exercise 5.21 Prove that Q/Z is isomorphic to the direct product of one
copy each of (Z[1

p ])/Z taken over all the integer primes p.
Show that if A is a DVR with local parameter z the module (A[1/z])/A

is an injective A-module.

The proof that injective embedding of modules always exist start with
the following result for Z-modules

Lemma 5.22 For a Z-module M and nonzero m ∈M , there exists a prime
p and a homomorphism

f : M → (Z[1
p ])/Z with f(m) 6= 0.
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Proof The annihilator of a nonzero element m ∈ M is an ideal of Z that
must be (n) ⊂ Z for n = 0 or n ≥ 2, so that the subgroup Z · m ⊂ M
generated by m is isomorphic to Z/(n). Choose a prime p | n and a surjective
map Z/n � Z/p. If n = 0 then any prime p works. Compose with an
embedding Z/pZ ↪→ (Z[1

p ])/Z and extend from Z · m to the whole of M

using the fact that (Z[1
p ])/Z is injective. �

Corollary 5.23 Consider the set of all homomorphisms from M to the in-
jective modules (Z[1

p ])/Z. The direct product of all these homomorphisms is
an embedding of M into an injective Z-module.

Now for modules over a general ring A. I will spare you the worries
about left and right modules when A is noncommutative – they can be
overcome if you care. A ring A is a Z-algebra. If M is a Z-module, the
Z-module HomZ(A,M) acquires the premultiplication A-module structure.
This is a key issue at many points in duality theory. Namely, x ∈ A acts on
HomZ(A,Z) by f 7→ f ◦ x, where f ◦ x first does multiplication by x while
we are still in A, followed by the map f . That is, it is the map a 7→ f(xa)
for x ∈ R. One checks the following points:

(1) For an A-module M and a Z-module N the following identity holds:

HomZ(M,N) = HomA(M,HomZ(A,N)).

The l.-h.s. is just maps of Abelian groups. On the right, we map to the
bigger module HomZ(A,N), but we have to obey all the A-linearity
conditions.

(2) If I is an injective Z-module then HomZ(A, I) is an injective A-module.

(3) It follows that for any A-module M , the product of all homomorphisms
M → HomZ(A, (Z[1/p])/Z) embeds M by an A-homomorphism into
an injective A-module.

There is a final point for algebraic geometers: let F be a sheaf of OX -
modules over a ringed space X. For P ∈ X, the stalk FP is an OX,P -module.
Embed each stalk FP into an injective OXP

-module IP (a separate choice for
each P , not requiring any continuity or compatibility at different P ). This
defines an OX -homomorphism of F into the sheaf of discontinuous sections
of the injective sheaf

⊔
IP .
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5.14 Projective dimension and injective dimension

Proposition 5.24 1. Let M be an A-module. Equivalent conditions:

(a) Extd+1(M,N) = 0 for every A-module N .

(b) M has a projective resolution of length ≤ d.

2. Let N be an A-module. Equivalent conditions:

(a) Extd+1(M,N) = 0 for every A-module M .

(b) N has an injective resolution of length ≤ d.

(c) Extd+1(A/P,N) = 0 for every P ∈ SpecA.

The two parts are categorically dual. In both (a) ⇒ (b) is trivial, and
(b) ⇒ (a) very simple.

If P0 ← P1 ← · · · ← Pd ← Pd+1 ← · · · is a projective resolution of M ,
set Qd = imPd+1 and tag the tail of P q onto Qd to give a projective resolution
Qd ← Pd+1 ← · · · . Then the homology Hd+1(Hom(P q),M) computes both
Extd+1(M,N) = 0 and Ext1(Qd, N) = 0.

Therefore Ext1(Qd, N) = 0 for all n, so that Qd is projective, and P0 ←
P1 ← · · · ← Qd ← 0 is a projective resolution of M of length d, which proves
(a).

6 To do list

No human endeavour is ever complete, and that applies especially to lecture
notes. Here are some thing I would like to patch up in future drafts.

Chapter 5 treats Regular sequences and the Koszul complex and Chap-
ter 6 Homological algebra methods, Cohen–Macaulay and Gorenstein. 3

Aim and summary of Chapter 6 A Noetherian local ring A,m, k is
Cohen–Macaulay if there exists a regular sequence s1, . . . , sn in m of length
n = dimA. This means that we can cut down A to an Artinian (0-
dimensional) local ring, where each step is A → A = A/(s) with s ∈ m
a nonzerodivisor.

In additions to direct arguments, Chapter 6 treats this notion via the
Ext groups, viewed both

3This material needs tidying up, but it is mostly there in some form.
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(I) as covariant functors, meaning ExtiA(M, –) with M fixed (typically,
M = A/m = k), usually calculated in terms of a projective or free resolution
of M .

(II) as contravariant functors ExtiA(–, N) with fixed N , calculated in
terms of an injective resolution of N .

The following sample argument illustrates the relevance of the Ext func-
tors: suppose A = k[x, y] and M = A/(x, y). Then M only contains tor-
sion elements (annihilated by x and y), whereas N0 = A is torsion-free.
It follows that HomA(M,N0) = 0. If I replace the second argument by
N1 = A/xA, then N1 has AssN1 = (x). No element of N1 is annihilated
by y, and again Hom(M,N1) = 0. However, if I replace the second argu-
ment by N2 = A/(xA+ yA), I finally get a module with Hom(M,N2) 6= 0.
We can chase this map back through standard exact sequence of Exts to
Ext1(M,N1) and then on to Ext2(M,N0).

To do: The discussion of depth 0 and 1 relates to Serre’s criterion: normal
iff R1 plus S2. This is currently worked out in 2024 Worksheet 3, Part I.

Replace graded polynomial ring by regular local ring. The full form of
the Hilbert Syzygies theorem and its Auslander–Buchsbaum refinement still
works, but requires more involved arguments.

Serre’s characterisation: a local Noetherian ring is regular if and only if
is has finite projective dimension.

The calculations involved in the structure sheaf OX of the affine scheme
SpecA = X,OX , together with the associated quasicoherent sheaf F of an
A-module M , the equivalence of categories between A-modules and quasi-
coherent sheaves on X. Serre’s theorem H i(X,F) = 0 for i > 0.

More details on projective A-modules, and the proof that locally free
implies projective. The treatment of Eisenbud (Ex 4.11(b) p.137, depending
on Prop. 2.10, p.68) and Matsumura [Th 7.12, p.52] both work by saying
that HomA(M,N) is compatible with localisation A→ S−1A, but I want to
do it in the spirit of affine schemes and homs between quasicoherent sheaves.
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